
www.manaraa.com

Data Structures for Mobile Data

Julien Basch Leonidas J� Guibas

Computer Science Department

Stanford University

Stanford� CA ������ USA

fjbasch�guibasg�cs�stanford�edu

John Hershberger

Mentor Graphics Corp�

���� SW Boeckman Road

Wilsonville� OR �����	����� USA

john hershberger�mentorg�com

Abstract

A kinetic data structure �KDS� maintains an attribute of interest in a
system of geometric objects undergoing continuous motion� In this paper
we develop a conceptual framework for kinetic data structures� propose
a number of criteria for the quality of such structures� and describe a
number of fundamental techniques for their design� We illustrate these
general concepts by presenting kinetic data structures for maintaining
the convex hull and the closest pair of moving points in the plane� these
structures behave well according to the proposed quality criteria for KDSs�

� Introduction

We present a set of novel data structures for the e�cient maintenance of various
continuous and discrete attributes of mobile data� For example� given n points
moving continuously in the plane� we give methods for maintaining their convex
hull or the separation of their closest pair� We call the combinatorial description
of these attributes a con�guration function of the mobile data�� Since motion is
common with objects in the physical world� the examples we discuss in this paper
come primarily from computational geometry and are motivated by problems

�By combinatorial description of the convex hull we mean the circular list of points forming
the hull� the combinatorial description of the closest pair is just the identity of the two closest
points�

�



www.manaraa.com

like collision detection in robotics and animation� visibility determination in
computer graphics� etc� Our techniques� however� are more generally applicable
to the processing of discrete functions associated with any kind of continuously
changing data� We call our data structures kinetic� to distinguish them from
their more classical static or dynamic �in the other sense� as we explain below�
counterparts� and we abbreviate the term �kinetic data structure� to KDS for
short� We call kinetization the process of transforming an algorithm on static
data into a data structure that is valid for continuously changing �moving� data�

The problems of convex hull and closest pair maintenance have been ex�
haustively studied in computational geometry 	�
� ��� �
� �
� ��� ��� ���� but
almost exclusively in the context of static objects with operations like insertion
and deletion� Our emphasis instead is on the maintenance of such con�guration
functions under continuous motion of the given objects� Though in principle
the continuous motion of a single object can be approximated� after a discrete
sampling of time� by deleting it and reinserting it at a new position at each
time step� this method is clearly ill�adapted to our purposes and wasteful of
computation� In particular� any �xed rate sampling of the evolving system will
either oversample or undersample the system� as the events of interest to the
con�guration function typically occur in irregular patterns� The aim of our tech�
nique is to take full advantage of the coherence present in continuous motion
so as to process a minimal number of combinatorial events� yet still maintain
the con�guration function correctly� In this respect� the way of analyzing our
data structures is akin to the dynamic computational geometry framework in�
troduced by Atallah 	�� in order to study the number of combinatorially distinct
con�gurations of a given kind �e�g�� convex hull or closest pair� that arise during
the continuous motion of geometric objects� Unlike Atallah�s scheme� however�
our data structures do not require us to know the full motion of the objects in
advance� Thus they are better suited to real�world situations in which objects
can change their motion on�line because of interactions with each other� external
impulses� etc�

We assume that each moving object has a posted �ight plan that gives full or
partial information about its current motion� As mentioned above� �ight plans
can change� A �ight plan update can occur because of interactions between our
object and other moving objects� the environment� etc� For example� a collision
between two moving objects will in general result in updates to the �ight plans of
both objects� The interface between our kinetic data structures and the object
motions is through a global event queue� Thus our techniques most closely
resemble plane sweep methods in computational geometry� except that in our
case the dimension being swept over is time� A key aspect of our data structures
is that we have a �narrow interface� to the motion� What we mean by this is
that the kinds of events we have in our event queue correspond to possible
combinatorial changes involving a constant �and typically small� number of
objects each� For example� in the case of ��D convex hull maintenance� one type

�



www.manaraa.com

of event we will use is �the points A�B�C become collinear� or� equivalently�
�the triangle ABC reverses sign �orientation��� Indeed� it will turn out that the
correctness of whatever con�guration function we maintain can be guaranteed
with a conjunction of such low�degree algebraic conditions involving a bounded
number of objects each�we call these conditions the certi�cates of the KDS�

At any one time� our event queue will contain several KDS events corre�
sponding to times when certi�cates might change sign� The times for these
events are calculated using the posted �ight plans of the objects involved� If�
because of other events� the �ight plan of an object is updated� then all certi��
cates involving that object must be located and have their �sign change� time
recalculated according to the new plan� In this way the event queue adapts to
the evolving motions of the objects� We can deal in the same way with objects
whose �ight plan is only partially known� In our �sign of the triangle ABC�
example above� given some partial bounds on the positions and velocities of
the points A�B�C� we can easily calculate a time interval �t during which we
can be sure that the sign of ABC does not change� Thus we can schedule an
event to occur after �t time units� and at that point we can recheck the sign
of ABC and proceed similarly �after updating our knowledge of the motions of
the participating points�� In general our philosophy will be that each moving
object needs to be aware of all the events in the event queue that involve it and
the validity assumptions about its motion on which these events are based� If
the motion of the object changes so that any of these assumptions is no longer
valid� then it is the responsibility of the object to take the steps necessary to
have these events rescheduled at the times appropriate for its new motion� A
general issue that arises here is how best to spend �sensing dollars� in order to
acquire the information about the moving objects that is necessary to detect
the events of interest for the KDS� We will not address this issue in this paper�

A key property of a kinetic data structure is that the certi�cates of the KDS
form� at any time� a proof of correctness of the current con�guration function�
Their failure times are the only times at which the con�guration function can
possibly change� It is in this sense that the proof being maintained by the KDS
guides the algorithm to examine the evolving system only at the set of relevant
times�i�e�� at those times at which the current proof may become invalid� When
a certi�cate fails and the proof becomes invalid� the KDS needs to update the
proof and possibly also the value of the con�guration function�

We will analyze and evaluate a kinetic data structure in a number of di�erent
ways� For the analyses of KDSs we will assume that the instantaneous motions of
the objects are known and are parameterizable by what we call pseudo�algebraic
functions of time� These are functions with the property that each of the cer�
ti�cates involved in the kinetization changes sign at most a bounded number
of times�very much in the spirit of situations in which Davenport�Schinzel se�
quences have been used 	
�� in computational geometry� Most obviously� a KDS






www.manaraa.com

is good if the cost of processing a certi�cate failure is small� In order to quantify
this and the following measures� let n describe the complexity of the evolving
system� for example the number of points moving in the plane in the convex
hull and closest pair examples of the later sections� We will speak of a cost as
being small if it is asymptotically of the order of O�Polylog�n��� or O�n��� for
some small � � 
�

We call a KDS responsive if the worst�case cost of processing a certi�cate
failure is small�this is the cost of discovering how to update the proof and
�possibly� the con�guration function� this in general will involve descheduling
certain events �as some old certi�cates leave the proof� and scheduling some
new events �as new certi�cates enter the proof��

A second key performance measure for a KDS is the worst�case number of
events processed� We make a distinction between external events� i�e�� those
a�ecting the con�guration function we are maintaining �e�g�� convex hull or
closest pair�� and internal events� i�e�� those processed by our structure because
of its internal needs� but not a�ecting the desired con�guration function� Our
aim will be to develop kinetic data structures for which the total number of
events processed by the structure in the worst case is asymptotically of the
same order as� or only slightly larger than� the number of external events in
the worst case �technically� we require that the ratio of total events to external
events is small�� This is reasonable� as the number of external events is a lower
bound on the cost of any algorithm for maintaining the desired con�guration�
A KDS meeting this condition will be called e�cient�

We de�ne the size of a KDS to be the maximum number of events it needs
to schedule in the event queue at any one time� We call a structure compact if
its size is roughly linear in the number of moving objects�

Finally� we call a KDS local if� at any one time� the maximum number of
events in the event queue that depend on a single object is small� This property
is crucial for fast handling of �ight plan updates��

To summarize� our kinetic data structures are di�erent from classical dy�
namic data structures� though we can �and often want to� accommodate inser�
tions and deletions� our focus is on continuous motion and not discrete modi�ca�
tions� We can use Atallah�s framework of dynamic computational geometry to
get lower bounds on the amount of work we have to do� But our structures are
on�line and can be used to implement correct simulations even when the object
�ight plans change because of interactions between the objects themselves or
the objects and the environment� or even when only partial information about
the motions is available� Furthermore� we provide some general tools for the
kinetization of static algorithms that lead to KDSs that are easy to analyze and
perform well�

�We remark that locality implies compactness� but all other quality measures are
independent�

�



www.manaraa.com

��� An illustrative example

To make the issues above more concrete� let us consider the following simple
��D situation� Given a set of points moving continuously along the y�axis� we
are interested in knowing at all times which is the topmost point �the largest� if
we think of the points as numbers�� If two points meet� we allow them to pass
each other without interaction� Suppose further that we know that the points
are moving with constant velocities �but possibly a di�erent one each�� starting
from an arbitrary initial con�guration�

If we draw the trajectories of the points in the ty�plane �where the t axis is
horizontal and denotes time�� then our problem is nothing but computing the
upper envelope of a set of straight lines in the plane �or at least the part of it that
is after the initial time t��� This upper envelope computation can be trivially
done in O�n logn� time with a divide and conquer algorithm �this bound holds
even if points can appear and disappear at arbitrary times� but then it is not
trivial 	����� In the worst case� the number of times during the motion that
the topmost point changes is ��n�� Thus we have a method for computing the
con�guration function of interest in time that is only a logarithmic factor higher
than the maximum number of changes in the con�guration function itself�

For our purposes� however� this solution is unsatisfactory� because it is really
based on knowing in advance the full motions of the points� What we seek is
a strategy that works on�line and can accommodate �ight plan updates� So
suppose instead that we try to maintain the sorted order of our points along
the y�axis� on�line� For every pair of points that are currently consecutive along
the y�axis we schedule an event that is the �rst time when these points cross
�or if� as above� our knowledge of the motions is incomplete� we schedule an
event based on our estimate of how long we can be sure that the relative order
of the points does not change�� When two adjacent points meet� this destroys
two old adjacencies and creates two new ones along the sorted list� as in the
plane sweep algorithm of Bentley and Ottmann 	��� modi�ed by Brown 	����
Thus we deschedule �up to� two events and schedule �up to� two new events� In
this process we always maintain the sorted list of points� and in particular we
always know the topmost one as well� Unfortunately� although the kinetic data
structure obtained is responsive� local� and compact� it may have to process
��n�� events even when the points have the simple motion described above
�imagine that half the points are stationary� and the other half pass over them��
Thus the number of internal events here is an order of magnitude greater than
those a�ecting the con�guration function we are interested in�this solution is
not e�cient�

A third structure� and one that lets us meet all our objectives� is to maintain
the moving points in a heap� with the root being the topmost �maximal� element�
The kinetization of the heap is as follows� For each link in the heap� we have
a certi�cate that guarantees that the child point is below the parent point� and

�



www.manaraa.com

an associated event at the time these points meet� To process an event and
maintain a valid heap� it is enough to interchange the parent and child of the
link associated with the event �Figure ��� as all the other heap inequalities are
still valid at that time �here� we are making strong use of the continuity of
the motions and of the hypothesis of non�degeneracy�� When a swap of two
elements happens in the heap� up to four adjacency �parent�child� relationships
can change in the heap� so we may have to deschedule four events and reschedule
four more� This describes our kinetic heap� which maintains the topmost element
at all times� Again� responsiveness� locality� and compactness are immediate�

Figure �� Maintenance of a kinetic heap� on the left� the link bd has an associated
event� To process this event� it is enough to interchange b and d in the heap�
and adjust the certi�cates and events that depend on them� When b and e meet�
there is no event as there is no change in the heap structure�

But how many events does the kinetic heap have to process in the worst
case� when the points move with constant velocities� This question turns out
to be surprisingly non�trivial� we can show by a potential argument that the
kinetic heap under linear point motions processes O�n log� n� events� and thus
is a data structure meeting our requirements �the proof appears in 	����

To prepare ourselves for the solutions to the other problems we will present
below� let us also consider the following fourth solution to the kinetic maximum
maintenance problem� Consider �rst an algorithm that computes the maximum
of n �static� numbers� The algorithm computes the maximum recursively� by
partitioning the numbers into two approximately equal�sized groups �arbitrar�
ily�� computing the maximum of each subgroup� and then comparing the two
winners to select the �nal true maximum� If viewed from the bottom up� this
is exactly a tournament for computing the global leader� In the end this algo�
rithm has performed O�n� comparisons that altogether prove that the maximum
it computed is indeed the true maximum� Now imagine that our numbers start
varying�our points can move� As long as each of the comparisons the algorithm

�



www.manaraa.com

made stays valid� the identity of the maximum element cannot change�

A general kinetization strategy we will use consists of taking the certi�cates
of correctness in the computation performed by our static algorithm�the com�
parisons in this case�and associating with each of them an event in the global
queue that describes when that certi�cate will �may� be violated in the future�
When a violation happens� we hope that there will be a simple and e�cient
way to update the output of the algorithm and the set of certi�cates to be
maintained� In our example� suppose that a particular comparison involved in
the maximum computation �ips� This comparison is between the leaders of two
subgroups at a certain level of the tournament tree� If the winner changes� then
this winner has to be percolated up the tournament tree� till it is either defeated
or declared the overall maximum� But because a tournament tree is balanced�
this computation takes only O�logn� time and can a�ect at most O�logn� ex�
isting certi�cates �a constant number of deschedulings and reschedulings per
level�� We call this fourth structure a kinetic tournament�

If our points move with constant velocities� how many events will our kinetic
tournament have to process� The key insight to answering this question is
to realize that the kinetic tournament is implementing a divide�and�conquer
algorithm for the computation of the upper envelope of n straight lines in the
ty�plane �the point trajectories�� For example� the comparisons performed over
time at the top level for declaring the �nal leader are exactly those needed to
merge the upper envelopes of the two subgroups of the lines� The overall cost
of the merge is easily seen to be O�n�� Thus this divide�and�conquer way of
implementing the upper envelope computation has a worst�case cost satisfying
the recurrence C�n� � �C�n��� � ��n�� which solves to C�n� � O�n log n��
The number of kinetic tournament events �reschedulings� etc�� is proportional
to the number of times the identity of one of the contestants at a node of
the tournament tree changes� Each such identity change corresponds to an
intersection in one of the sub�envelopes computed by the divide�and�conquer
algorithm� and hence is counted by the O�n logn� bound on C�n�� Therefore the
kinetic tournament accomplishes our goal of maintaining on�line the maximum
of a set of moving points� and it is a responsive� e�cient� compact� and local
KDS� If we use a priority queue to store the relevant events and perform a
discrete�time simulation� then the event counts for all the structures described
here can be made into run�times with an extra O�logn� factor �the priority
queue cost��

��� Previous results and summary of the work

A number of works in the early eighties 	�� � � ��� considered the problem of
computing a con�guration function of moving points� In all cases� the motion
was considered fully known� and the problem was typically cast and solved in one

�



www.manaraa.com

dimension higher� The method of Edelsbrunner and Welzl 	� � for computing
the k�th order statistic of a set of points moving at constant speed along the
x�axis �introduced as a motivation for computing the k�level of an arrangement
of lines� is most similar to a KDS�

More recently� questions concerning the maintenance of the Voronoi diagram
of moving points �or its dual� the Delaunay triangulation� have received exten�
sive attention 	��� ��� ��� 

�� The signi�cance of our work is best understood
in comparison� The Delaunay triangulation contains a proof of its correctness
involving only four�point certi�cates for each of the edges of the triangulation�
In that sense� it is what we might call a self�certifying structure� As such� its
kinetization is immediate� we need only maintain a certi�cate for each of the
edges� Whenever any certi�cate changes sign� we know that we can update the
triangulation �and the corresponding certi�cate structure� by an edge��ip on the
failing edge� The structure has no internal events� hence the issue of e�ciency
does not arise� It is also well known that the Delaunay triangulation can be
used to compute both the convex hull and the closest pair� so that we readily
have a common kinetic data structure to maintain these con�guration functions
�closest pair maintenance requires in addition a kinetic tournament on the edge
lengths�� but this solution has two drawbacks� it is not local �a point can be
a vertex of linearly many triangles�� nor known to be e�cient �the tightest up�
per bound known on the number of changes to the Delaunay triangulation of
points in algebraic motion is roughly cubic in the number of points 	���� whereas
the convex hull and the closest pair can change roughly a quadratic number of
times in the worst case�� In general� one can view the process of kinetization as
�su�ciently augmenting a con�guration function to make it self�certifying��

Algorithms for collision detection in robotics by Lin and Canny 	��� and Pon�
amgi et al� 	� � exploit temporal coherence to maintain the minimum distance
between all pairs of moving objects� but their approach re�tests the validity of
separating planes at every step� and recalculates these separators from scratch
when the old ones fail�

We have applied the methodology described above to a number of problems
in ��D computational geometry� In this paper� we present responsive� e�cient�
compact� and local kinetic data structures for two important and common con�
�guration functions� giving representative examples of the kinetization process�
Convex hull maintenance �Section �� calls upon some deep theorems of combi�
natorial geometry to prove the e�ciency of the structures we develop� Closest
pair maintenance �Section 
� requires the development of a novel static algo�
rithm� and specialized data structures to handle events e�ciently� In Section ��
we take up some further issues generated by this framework for mobile data and
present plans for further work�

Following the publication of the conference version of this paper 	 �� several
kinetic data structures have been developed for the maintenance of a variety of

 



www.manaraa.com

structures� binary space partitions 	�� 
�� closest pair and minimum spanning
trees in arbitrary dimensions 	���� and diameter and width 	���

� ��D convex hull

In this section� we present an e�cient kinetic data structure to maintain the
convex hull of a set of moving points in the plane� Following our general strategy
for kinetization� we �rst describe a static algorithm and its certi�cate structure�
simplify these certi�cates to attain certain desirable properties� and then show
how to maintain the certi�cate structure once the points start moving�

Before we proceed� we dualize the problem� as the algorithm is more natural
to describe in the dual setting� We focus here on computing the upper convex
hull� and dualize each point �p� q� to the line y � px� q� In the dual� the goal is
to maintain the upper envelope of a family of lines whose parameters change in
a continuous� predictable fashion� We will perform the kinetization in the style
of the O�n logn� divide and conquer algorithm mentioned in Section ��� for the
analysis of the kinetic tournament� we divide the set of n lines into two subsets
of roughly equal size� compute their upper envelopes recursively� and then merge
the two envelopes� To focus on the merge step� we �rst study how to maintain
the upper envelope of two convex piecewise linear univariate functions�

��� Upper envelope of two chains

We represent a piecewise linear function by a doubly linked list of edges and
vertices ordered from left to right� and we call this representation a chain� In
this section� we consider two chains�a red and a blue�and present a KDS to
maintain the purple chain that represents the upper envelope of the two input
chains�

As the supporting lines are the primary objects in our problem� we denote by
a lowercase letter an edge or its supporting line� and by ab the vertex between
edges a and b� For a vertex ab� the edge from the other chain that is above or
below ab is called the contender edge of ab and denoted ce�ab�� we add to each
vertex a pointer to its contender edge� We denote by ��� � �� the color �red or
blue� of an input vertex or edge� Finally� we denote by ab�prev �resp� ab�next�
the red or blue vertex closest to ab on its left �resp� right�� This is easily found
by comparing the x�coordinate of the neighbor vertex in the chain to which ab
belongs with that of one of the endpoints of the contender edge of ab�

The comparisons done by a standard sweep for merging the red and blue
chains lead to certi�cates of two types� x�certi�cates proving the horizontal
ordering of vertices� denoted by �x� and y�certi�cates proving the vertical po�
sition of a vertex with respect to an edge� denoted by �y� Unfortunately� if

�



www.manaraa.com

we were to keep all these comparisons as certi�cates� the kinetic data structure
thus obtained would not be local� as a given edge could be the contender of
linearly many vertices from the other envelope� We thus build an alternative
list of certi�cates that also involves comparisons between line slopes� denoted
by �s �Figure ���

The following table gives this modi�ed list of certi�cates� The �rst column
contains the name of a certi�cate� the second column contains the comparison
that this certi�cate guarantees� and the third column contains additional con�
ditions for this certi�cate to be present in the KDS� For instance� the �rst line
in the table says that there is a certi�cate called x	ab� in the KDS only when
ab and its right neighbor are of di�erent colors �the condition�� In this case�
the comparison certi�es the local x�ordering� The equation associated with this
comparison has to be solved for t in order to �nd the �rst time at which the
certi�cate fails�

Cert� Comparison Condition�s�
x	ab� ab �x ab�next ��ab� �� ��ab�next�
yli	ab� ab �y or �y ce�ab� b � ce�ab� �� �
yri	ab� ab �y or �y ce�ab� a � ce�ab� �� �
yt	ab� ce�ab� �y ab a �s ce�ab� �s b
slt	ab� a �s ce�ab� ce�ab� �y ab
srt	ab� ce�ab� �s b
sl	ab� b �s ce�ab� b �s ce�ab�

ab �y ce�ab�
sr	ab� ce�ab� �s a ce�ab� �s a

ab �y ce�ab�

The certi�cates have the following meaning� ��� The exact x�ordering of
vertices is recorded with x	� � �� certi�cates� ��� Each intersection is surrounded
by yli	� � �� and yri	� � �� certi�cates ��y left�right intersection��� �
� If an edge
is not part of the upper envelope� the certi�cates place its slope in the se�
quence of slopes of the edges covering it� either three �tangent� certi�cates
�yt	� � ��� slt	� � ��� srt	� � ���� or one certi�cate proving there is no tangent �sl	� � ��
or its symmetric sr	� � ���� Illustrations of the certi�cates appear in Figure ��

Lemma ��� Consider a con�guration C of two convex piecewise linear func�
tions and the certi�cate list L for their upper envelope as de�ned above� Let
C� be a con�guration for which all the certi�cates of L hold� Then the upper
envelope of C� has the same combinatorial description �i�e�� the same sequence
of vertices and edges� as that of C�

Proof� We show that the upper envelope of C� has the same vertices as the
upper envelope of C�

�




www.manaraa.com

yli[ab] 

x[ab] 

yri[a'b']

a

ba'

b'

slt[ab] 

yt[ab] 

srt[ab]

a b

sl[a'b']a'
b'

Figure �� Depending on the relative positions of the red and blue convex chains�
di�erent certi�cates are used to certify the intersection structure �top left case�
or the absence of intersection �top right and bottom cases�� Arrows point to
the elements being compared �vertices or edges��

First� all intersections in C are intersections in C�� as this is forced by the
intersection certi�cates �yli	� � �� and yri	� � ��� and the x�ordering� Assume now
that there is an intersection in C� that is not in C� and suppose that in C� the
red function is above the blue function at that point� Now consider the whole
red portion of the upper envelope in C that contains that point� As there are
y�certi�cates on both extremes of this region� the red is above the blue on both
sides in C� also� Hence� there are at least two purple intersections on this region
in C�� Consider two intersections between which the red falls below the blue�
Say that the blue sequence of edges is b�� b�� � � � � bj and the red sequence of edges
is r�� r�� � � � � rk �including the edges that intersect�� Now� r� �s b� and bj �s rk�
Hence there is at least one vertex where the relative ordering of slopes between
red and blue edges changes� and it is easy to see that the leftmost such vertex
is red� Call this vertex cd and its contender edge b� In C� edge b is entirely
below the red function� Hence there is either a certi�cate that proves that the
red function has higher �resp� lower� slope above b� or a tangent certi�cate that
proves that b is below the red function� In both cases� C� cannot have the same
outcomes on that certi�cate� contradicting the hypothesis� �

Hence� the certi�cate list described above is su�cient to maintain the upper
envelope� As in the case of any kinetic data structure� all these certi�cates are
placed in a global event queue� where each certi�cate is stamped with its failure
time� When it is time to process the �rst event in the queue� we need to update
the certi�cate list� Below is the list of changes that need to be performed for
each type of event� A pictorial description is shown in Figure 
�

��



www.manaraa.com

d

sl[cd] 

slt[ab]

a
b

c

a b

c
d

(i)

sl[ab] 

sr[bc]
a

b
c a

b
c(ii)

yli[ab] 

yri[ab]a

b b

a
(iii)

yli[ab] 

yt[ab]

a b a b

(iv)

slt[bc] 

srt[ab]

a

b

c

a

b

c
(v)

Figure 
� A partial list of events� The certi�cate that changes sign is indicated
for each transition� There are three additional cases not shown� �i� and �iii� in
mirror image� and the event corresponding to the x�certi�cate�

��



www.manaraa.com

Event� failure of yli	ab�
Delete yri	ab�next�� yli	ab��
if �yri	ab�
then begin

Delete yli	ab�prev�� yri	ab�
Create slt	ab�� srt	ab�� yt	ab�
Remove ce�ab� from output

end�
else begin

Create yri	ab�� yli	ab�prev�
Add a or remove b in output

end�

Event� failure of yt	ab�
Delete yt	ab�� slt	ab�� srt	ab��
Create yli	ab�� yri	ab�next��
Create yri	ab�� yli	ab�prev��
Add ce�ab� to output

Event� failure of slt	ab�
Delete slt	ab�� srt	ab�� yt	ab��
cd� ab�prev�
if d � a �! i�e�� same color !�
then Create slt	cd�� srt	cd�� yt	cd��
else Create sl	cd��

Event� failure of sl	ab�
Delete sl	ab��
cd� ab�next�
if ��cd� �� ��ab�
then Create slt	cd�� srt	cd�� yt	cd��
else Create sr	cd��

Event� failure of x	ab�
Delete x	ab��
cd� ab�next�
ce�ab�� d�
ce�cd�� a�

�




www.manaraa.com

�! cd�prev and ab�next now have new values !�
if ��cd�prev� � ��cd�
then Delete x	cd�prev��
else Create x	cd�prev��

if ��ab�next� � ��ab�
then Delete x	cd��
else Create x	ab��

�! Now update intersection certi�cates !�
if �yri	ab�
then Delete yri	ab�� Create yri	cd��

if �yli	cd�
then Delete yli	cd�� Create yli	ab��

�! Update slope certi�cates if ab is below cd !�
if �sl	ab� then Update sl	ab� to point to new ce�ab��
elseif �yt	cd�

then Delete slt	cd�� srt	cd�� yt	cd�� Create sl	ab��
elseif �sr	ab� then if a �s d

then Delete sr	ab�� Create slt	cd�� srt	cd�� yt	cd��
else Update sr	ab� to point to new ce�ab��

�! Symmetric treatment if cd is below ab �not shown� !�

As an example� consider the event yt	ab�� which corresponds to case �iv��
right to left� of Figure 
� a red edge moves above a blue vertex� In this case�
we remove the three certi�cates proving that the red edge was below the blue
chain �bottom case of Figure ��� and add certi�cates to bracket the two newly
formed intersections� Finally� the new edge on the upper envelope is added to
the output�

Events corresponding to certi�cates yri	ab�� sr	ab�� and srt	ab� are exactly
symmetric to yli	ab�� sl	ab�� and slt	ab��

Lemma ��� The preceding procedures correctly update the certi�cate list when
the corresponding events happen�

Proof� By examination of each case� omitted in this paper� �

In general� when a y�certi�cate changes sign� this modi�es the output� either
two neighbor vertices merge into one� or the reverse� Hence� for the purpose
of the recursive construction� it is necessary to be able to handle such local
structural changes in the input� and it can be checked that this also changes
O��� certi�cates�

��



www.manaraa.com

��� Divide and conquer upper envelope

To kinetize the divide and conquer algorithm� we keep a record of the entire
computation in a balanced binary tree� A node in this tree is in charge of
maintaining the upper envelope of the two upper subenvelopes computed by its
children� If an event triggers a change in the output of a node� this node passes
on the event to its parent� as a local structural change in the input� and so on
to upper levels of the computation tree while this change remains visible�

As in the case of the one�dimensional kinetic tournament data structure for
known motions� we analyze e�ciency by considering time as an additional static
dimension and charging each event to a feature of a three�dimensional structure
with known worst�case complexity� The primal version of the problem is ill�
suited for such an analysis� as the static structure described by the convex hull
over time is not the convex hull of the trajectories of the underlying points� On
the other hand� in the dual� the structure described by the upper envelope over
time is exactly the upper envelope of the surfaces described by the underlying
lines� We can thus use results proving near�quadratic complexity for the upper
envelope of algebraic surfaces 	
��� We also make use of the recent result of
Agarwal� Schwarzkopf� and Sharir 	�� about the near�quadratic complexity of
the overlay of the projections of two upper�envelopes to obtain sharp bounds
on the number of events due to x�certi�cates�

The results mentioned above are currently proven only in the context of
algebraic surfaces of bounded degree� since a general theory of two�dimensional
Davenport�Schinzel sequences is still lacking� Hence� in this section� we assume
that the position of a point is given� as a function of time� by two algebraic
functions of bounded degree�

Theorem ��� The KDS for maintaining the convex hull is e�cient� responsive�
compact� and local�

Proof� The KDS is clearly responsive� local� and compact� We turn to the
proof of e�ciency�

We �rst focus on the events attached to a speci�c node of the computation
tree that involves a total of n red and blue lines� Consider time as a static
third dimension� a line whose parameters are polynomial functions of time
describes an algebraic surface in three dimensions� The blue �red� family of
lines is now a family of bivariate algebraic functions� Looking at the upper
envelopes of the blue and red families� and at their joint upper envelope in
turn� we observe that a purple vertex on this upper envelope corresponds to
a change of sign of a y�certi�cate �a �y�event�� in the kinetic interpretation�
A monochromatic vertex corresponds to the appearance�disappearance of an
edge triggered by some descendant in the computation tree� As our surfaces
are algebraic of bounded degree� their upper envelope has complexity O�n����

��



www.manaraa.com

for any � � 
 	
��� and therefore the number of events due to y�certi�cate sign
changes is bounded by this quantity��

Consider now the events corresponding to the x reordering of two vertices of
di�erent colors �called �x�events��� In the 
�dimensional setting� a blue envelope
vertex becomes an edge of the blue surface upper envelope� Hence� an x�event
corresponds to a point �x� t� above which there is an edge in both the blue
and the red upper envelopes� In other words� each x�event is associated with a
bichromatic vertex in the overlay of the projections of the red and blue upper
envelopes on the xt�plane �y � 
�� If there are n bivariate algebraic surfaces of
bounded degree in total� the complexity of this overlay is also O�n���� for any
� � 
 	��� Hence� there are at most that many x�events�

Finally� each pair of lines becomes parallel a constant number of times� so
there are O�n�� slope events attached to the node we have been focusing on up
to now�

Getting back to the full computation tree� we conclude that the total number
of events C�n� satis�es the recurrence C�n� � �C�n����O�n����� and therefore
C�n� � O�n����� In the worst case� the convex hull of n points in linear or higher
order motion changes "�n�� times 	��� Hence our KDS is e�cient� �

� Closest pair in ��D

Not all static algorithms lend themselves to an e�cient kinetization� For in�
stance� consider the following classic algorithm of Shamos 	��� for �nding the
closest pair within a set of points in the plane� divide the points into the left
half and the right half and recursively compute the closest distances �L and �R
within each half� Then check all pairs that are within distance � � min��L� �R�
of a vertical median line y � y�� A kinetic version of this algorithm would re�
quire� for each point p on the left side� a certi�cate of the form xp � y��� or the
converse� The resulting KDS would not even be responsive� when the identity
of the pair that realizes � changes� all certi�cates of the form above need to be
updated� and there might be a linear number of them� Surprisingly� we were
not able to �nd a good kinetization of any known closest pair algorithm�

In this section� we describe a new static algorithm for the closest pair based
on the plane sweep paradigm� We then add data structures to record the history
of the algorithm� and show that these data structures can be maintained as the
points move� The data structures always re�ect the history that would result if
the plane sweep algorithm were applied to the current con�guration of points�
This resulting kinetic data structure has the qualities described in Section ��

�The best known bound for this speci�c problem is tighter ���� but this bound is su�cient
for our purposes�

��



www.manaraa.com

��� The static plane sweep algorithm

The static closest�pair algorithm is based on the idea of dividing the space
around each point into six �
� wedges� It is a trivial observation that the
nearest neighbor of each point is the closest of the nearest neighbors in the six
wedges� We show that an approximate de�nition of nearest neighbor in each
wedge �using the L� norm� is still su�cient to �nd the closest pair� The relaxed
de�nition lets us compute neighbors e�ciently� and aids in the kinetization of
the algorithm�

We de�ne the dominance wedge of a point p� call it Dom�p�� to be the right�
extending wedge bounded by the lines through p that make�

� angles with the
x�axis� The dominance wedge is de�ned to be open on the bottom and closed
on top �it includes its upper boundary� but not its lower boundary�� We de�ne
Circ�p� r� to be the circle with radius r centered on point p� In this section of
the paper� the distance between two points p and q is denoted by pq�

Our algorithm uses all three right�extending wedges bounded by the vertical
line through p and by the �

� lines� but we frame our arguments in terms of
the single dominance wedge that contains the point ��� 
�� The same arguments
apply to the other wedges by rotation�

Let the closest pair of points in S be �a� b�� with a to the left of b �or below
b� if their x�coordinates are equal�� For notational convenience� we write this as
a 	 b� Without loss of generality� assume that b 
 Dom�a�� if this is not the
case� then consider the ��
� rotated plane that puts b in Dom�a��

b

a

q

p

b

b'

a

(a) (b)

p

Figure �� If �a� b� is the closest pair and b 
 Dom�a�� then� �a� there is no point
p to the right of a that dominates b� as such p would lie in the shaded region and
be closer to a than b is� �b� point b is also the leftmost point in Dom�a��any
point b� left of b would be closer to b than a is�

Lemma ��� Point b is not contained in Dom�p� for any third point p with
a 	 p�

Proof� Point b lies on the arc Circ�a� ab��Dom�a�� shown dark in Figure ��a��

��



www.manaraa.com

Any point p to the right of a that contains b in Dom�p� must lie in the shaded
region bounded by the arc� the vertical line through a� and the �

� open lines
through the top and bottom of the arc� But this region is entirely contained in
Circ�a� ab�� which implies that ap � ab� a contradiction� �

Lemma ��� The leftmost point of S in Dom�a� is b�

Proof� Let r � ab� the separation of the closest pair� Consider the triangle
formed by the intersection of Dom�a� with the half�plane left of b� If the leftmost
point b� is not equal to b� then b� must lie in the portion of this triangle outside
Circ�a� r�� See Figure ��b�� The points of this region farthest from b are the in�
tersections p and q of the vertical line through b with the boundaries of Dom�a�
�because the perpendiculars from b to the boundaries of Dom�a� lie inside
Circ�a� r��� Without loss of generality let pb � qb� Consider the triangle �abp�
By the law of sines� pb�ab � pb�r � sin�� pab�� sin�� apb� � sin�� pab�� sin �
��
Because � pab 
 �
�� pb 
 r� That is� bb� 
 r� Furthermore� the partly
open�partly closed de�nition of Dom�a� means that bb� � r� a contradiction�
�

For any point p� let Maxima�p� consist of the points of S on the boundary
of �

q�S

p�q

Dom�q��

In words� this set contains all the points to the right of p that are not in the
dominance wedge of any other point to the right of p� We de�ne the set of
candidates associated with p� Cands�p�� to be the set Maxima�p��Dom�p�� We
denote the leftmost of these by lcand�p�� See Figure �� By Lemmas 
�� and 
���
we have b � lcand�a� for the closest pair �a� b��

p

���
���
���

Maxima(p)

lcand(p)

Cands(p)

Figure �� The sets of points Maxima�p� and Cands�p�� and the leftmost candi�
date lcand�p��

� 



www.manaraa.com

The plane sweep algorithm performs the following steps three times� once on
the untransformed points of S� once on S rotated around the origin by ��
��
and once on S rotated by ��
�� Each of these rotations brings one of the three
families of right�extending wedges into the central position� bounded by �

�

lines�

�� Initialize a y�ordered list of points Maxima to �� �Maxima contains
Maxima�p� at the top of each iteration of the loop below��

�� For each point p 
 S from right to left�

�a� Set Cands�p� � Maxima � Dom�p��

�b� Set lcand �p� to be the leftmost element of Cands�p��

�c� Delete the points of Cands�p� from Maxima �

�d� Insert p into Maxima at its proper place in y�order�

At the end of this procedure� repeated for all three directions� one of the
three sets of �p� lcand �p�� pairs it produces contains the closest pair �a� b��

It is clear that the plane sweep algorithm can be implemented to run in
O�n log n� time� Sorting the points of S in preparation for sweeping takes
O�n log n� time� We store Maxima in a balanced binary tree structure that
supports logarithmic�time searches� insertions� deletions� splits� and joins 	����
Computing Cands�p� requires two O�logn� time searches on Maxima � since
Cands�p� is a consecutive subsequence of Maxima � Finding lcand�p� takes ad�
ditional time jCands�p�j� but since those points are immediately removed from
Maxima � the total time spent �nding the leftmost points of all the candidate
sets is only O�n�� Splitting Cands�p� out of Maxima and inserting p in its place
takes O�log n� per point p� Thus the total running time is O�n log n��

��� Kinetization

To make the plane sweep algorithm kinetic� we need to transform it into a static
data structure that represents the action of the plane sweep algorithm� We also
need a set of certi�cates to show that the data structure is valid for the current
set of points�

We de�ne the maxima diagram to be the union� over all points p� of the part
of the boundary of Dom�p� that lies outside �q�Maxima�p�Dom�q�� Each point
p of S is the left endpoint of two segments in the maxima diagram that extend
from p to the boundaries of Dom�q� and Dom�q��� for two points q and q� in
Maxima�p�� We say that q and q� are the targets of p in the maxima diagram�

We use as certi�cates three sorted orders� the projections of the points in S
on the x�axis and on the lines that make an angle of ��
� with the x�axis� Each
point belongs to up to six certi�cates� involving its two neighbors in each of the

��



www.manaraa.com

three sorted orders� We also use certi�cates for a kinetic tournament� described
below�

Lemma ��� If two con�gurations of S have all three orders equivalent� then
for each p� Maxima�p�� Cands�p� and lcand�p� are the same in the two con�g�
urations�

Proof� By induction on the points of S� from right to left in 	 order� For each
point p in turn� we assume that Maxima�p� is the same for both con�gurations�
with the same y�order� We prove that Cands�p� and lcand�p� are the same� and
�nally show that Maxima�p�� is the same for p� the predecessor of p in 	 order�

Point p has the same targets in each version of Maxima�p�� since p is in
the same ��
��orders with respect to Maxima�p� in both con�gurations� Hence
Cands�p� is the same in the two con�gurations� and because the x�orders are
the same� lcand �p� is also the same� The set Maxima�p�� is obtained from
Maxima�p� by removing the points of Cands�p�� then inserting p between its
two targets� hence Maxima�p�� is the same in the two con�gurations� �

The maxima diagram can undergo a linear number of changes when a pair
of points swaps in one of the three linear orders� However� the changes to the
maxima diagram can be represented in an implicit data structure that requires
only O�log n� updates per swap� For this purpose� we keep two auxiliary data
structures for each p 
 S� called Cands�p� and Parents�p�� that represent two
separate one�to�many relations�

�� Cands�p� contains the intersection of Maxima�p� with Dom�p�� as a se�
quence of points ordered by y�coordinate� �This order is the same as the
orders induced along the ��
� directions�� This sequence is stored in a
balanced binary tree and supports the usual searching and update opera�
tions� In addition� each node of the tree has a pointer to its parent in the
tree� and the root of the tree for Cands�p� points to p� Thus each point
of q 
 S can �nd the point p 
 S whose candidate it is� q 
 Cands�p�� in
O�logn� time� Each node in a Cands�� tree also keeps track of the left�
most �in x�order� point in its subtree� and so the root of Cands�p� records
lcand�p�� The parent pointers can be maintained as part of the standard
tree update operations� within the same asymptotic time bound� as can
the �leftmost� �elds� As part of our algorithm� we will make sure that the
�leftmost� �elds are maintained correctly whenever the x�order of points
changes�

�� Parents�p� records all the points for which p is a target in the maxima
diagram� Parents�p� is an ordered sequence of �the points corresponding
to� the edges that hit Dom�p� from the left in the maxima diagram� The
sequence is ordered according to the order in which the edges hit Dom�p��

�




www.manaraa.com

This order need not correspond to the y�order of the points� however� the
sequence can be divided into the points above p� denoted Parentsa�p��
and the points below p� denoted Parentsb�p�� Dom�p� is the target for
the lower edge extending from all elements of Parentsa�p�� and is the
target for the upper edge of all elements of Parentsb�p�� In each of the
two subsequences Parentsa�p� and Parentsb�p�� the order of the points
�the order in which their edges hit Dom�p�� is the same as their x�order�
The sequence Parents�p� is stored in a balanced binary tree with parent
pointers� so for each of the two edges extending from a point q in the
maxima diagram� we can �nd the point p for which q 
 Parents�p� in
logarithmic time�

These are the only data structures needed for the kinetization� In particular�
we don�t use theMaxima data structure described in the static case� The follow�
ing algorithmic sketch shows how to update all the a�ected Cands��� Parents���
and lcand�� �elds when two points p and q exchange positions in the x�order
of S� Without loss of generality� assume that p 	 q �p is left of q� before the
exchange� Furthermore� assume that p is below q at the instant of exchange
�similar pseudo�code applies if p is above q�� See Figure ��

�� If p 
 Parents�q�� speci�cally in Parentsb�q�� then

�a� Split o� the portion of Cands�q� inside Dom�p� and join it to the top
of Cands�p��

�b� Let u be the point such that q 
 Parentsa�u�� Delete q from Parentsa�u�
and insert it into Parentsa�p��

�c� Let v be the new bottom point of Cands�q�� if any� or else the point
such that q 
 Parentsb�v�� Delete p from Parentsb�q� and insert it
into Parentsb�v��

�� Let p� and q� be the points such that p 
 Cands�p��� and q 
 Cands�q���
If p� � q�� then update lcand�p�� starting from p and q in the tree for
Cands�p���

Lemma ��� After the preceding procedure for updating the Cands��� Parents���
and lcand �� �elds when two points of S exchange in x�order� the data structure
correctly represents the maxima diagram for the current con�guration of S� and
the lcand�� �elds are correct�

Proof� If q is a target for p� then their x�exchange changes the maxima diagram�
Speci�cally� the points of Maxima�q� in Dom�q��Dom�p� are transferred from
Cands�q� to Cands�p�� Point p gets a new target� the new point of contact
between the segment from p and its target lies inside Dom�q�� Likewise q gets
p as a target� Step � handles these changes�

��



www.manaraa.com

p

q

p

q

Figure �� An x event and the change in the Cands sets�

The only edges of the maxima diagram that change are those that extend to
the right from p and q�there are no target changes for points either right or left
of fp� qg�so the operations of Step � su�ce to update the maxima diagram�

If neither p nor q is a target for the other� then the maxima diagram does
not change�the Cands�� and Parents�� �elds do not need to be updated�

Whether or not the maxima diagram changes� one lcand�� �eld may change�
If p� q 
 Cands�u� for some point u� we need to ensure that the �leftmost� �elds
are updated in the binary tree representing Cands�u�� so that any comparison
of p and q in that tree is re�evaluated� this may cause lcand�u� to change� Step �
takes care of this� �

The following pseudo�code tells how to update the a�ected �elds when two
points p and q exchange positions in the ��
��order of S �at the instant of
exchange� the line through p and q makes an angle of �

� with the x�axis��
Without loss of generality� assume that p is left of q� There are two cases�
depending on whether q enters or exits from Dom�p��

In the �rst case� q enters Dom�p�� See Figure �� Update the data structures
thus�

�� If p 
 Parentsa�q� then

�a� Let v be the point such that q 
 Cands�v�� Delete q from Cands�v�
and insert it into Cands�p��

�b� Let t be the leftmost point in Parentsb�q� that is to the right of p� if
any� or else the point such that q 
 Parentsa�t�� �Recall that x�order
in Parentsb�q� is equivalent to the order in which edges hit Dom�q���
Delete p from Parentsa�q� and insert p into Parentsa�t��

�c� Split o� the subsequence of Parentsb�q� whose points are to the left
of t �and hence left of p� and join it onto the bottom of Parentsb�p��

In the second case� q exits Dom�p�� See Figure �� The pseudo�code in this
case just inverts the action performed in the �rst case�

��



www.manaraa.com

p

q

t

v

p
q

t

v

(a) (b)

Figure �� A �
� event� �a�b� q enters Dom�p�� �b�a� q exits Dom�p��

�� If q 
 Cands�p� then

�a� Let t be the point such that p 
 Parentsa�t�� Delete p from Parentsa�t�
and insert p into Parentsa�q��

�b� Split o� from Parentsb�p� the points whose edges are incident to
Dom�p� below q� and join them onto the top of Parentsb�q��

�c� Let v be the new rightmost point of Parentsb�p�� if any� or else the
point such that p 
 Cands�v�� Delete q from Cands�p� and insert q
into Cands�v��

Lemma ��� After the preceding procedure for updating the Cands��� Parents���
and lcand�� �elds when two points of S exchange in the ��
��order� the data
structure correctly represents the maxima diagram for the current con�guration
of S� and the lcand�� �elds are correct�

Proof� Consider �rst the case in which q enters Dom�p�� If p �
 Parentsa�q��
then q �
 Maxima�p� and the exchange of p and q in the ��
��order does not
a�ect the maxima diagram at all� No data structure updates are necessary�

If p 
 Parentsa�q�� the maxima diagram changes� but only in the vicinity of
p and q� The exchange of p and q does not change the targets of points to the
right of p� Only the lower target of p needs to be updated� Step �b takes care
of this� Of the points to the left of p� only those with q as their upper target
�i�e�� members of Parentsb�q�� need to have their targets changed to p� Step �c
does this� The Cands�� set changes only for p �because q enters it� and for the
point v whose Cands�v� set q leaves� Step �a does this� The �leftmost� �elds are
updated in the Cands�� binary trees during the modi�cation� so lcand �p� and
lcand�v� are correctly maintained� The Cands�� and Parents�� lists are enough
to specify the combinatorial structure of the maxima diagram� since they are
correctly maintained� so is the maxima diagram�

In the case in which q exits Dom�p�� the changes to the maxima diagram are
the inverse of those in the �rst case� The update procedure for this case inverts
the action of the �rst update procedure� and hence is correct� �

�




www.manaraa.com

The procedure for exchanging two points in the ��
��order is symmetric to
the one for ��
��order exchanges� There are O�n�� exchanges in each of the
three orders�

It is clear that each of the update operations needed to restore the auxil�
iary data structures Cands��� Parents��� and lcand�� takes O�log n� time� each
involves a constant number of standard operations on balanced binary trees�

The �nal element of our kinetic data structure is a kinetic tournament on
the 
n distances corresponding to �p� lcand�p�� pairs �this adds 
n certi�cates
to our KDS�� The root of the tournament tree contains the closest pair at any
time during the running of the algorithm� Note that when lcand�p� changes�
it triggers a discontinuity of the associated distance in the kinetic tournament�
but bounds like those in Section � apply even in this case�

Theorem ��� The kinetic data structure for the closest pair problem is e��
cient� responsive� compact� and local�

Proof� When the n points of S move according to pseudo�algebraic functions
of time� the total number of external events is roughly quadratic� in the worst
case �consider n points moving on a line� the number of closest pairs is at least
the number of intersections between trajectories�� The worst�case number of
internal events is only a logarithmic factor more� the number of exchanges in
each of the three orders is O�n��� since any pair of points undergoes only a
constant number of exchanges under pseudo�algebraic motions� there are O�n��
changes to lcand�� values over the life of the algorithm� the number of vertices
on the lower envelope of the �p� lcand�p�� pairs is O�n���n�� where ��n� is an
extremely slowly growing function 	
��� and the kinetic tournament processes
only a logarithmic factor more events than appear on the lower envelope of the
pairwise distances� Hence the KDS is e�cient�

The processing of an event involves O�logn� operations on the structure
and the scheduling of O�log n� events in the event queue� Hence the KDS is
responsive�

There are only O�n� events in the event queue at any time� one for each of
the 
n � 
 order certi�cates� and O�n� for the kinetic tournament� Hence the
KDS is compact�

A point is involved in O�logn� certi�cates� Each point p of S belongs to at
most six order certi�cates and to O�log n� comparison certi�cates that maintain
the �leftmost� �elds in lcand �� trees� It belongs to at most three �p� lcand �p��
pairs �one for each of the three rotations�� Likewise� each p is lcand�q� for at
most three di�erent qs� one for each rotation� this is because for a single rotation�
the Cands�� sets are all disjoint� Each active �p� lcand �p�� pair participates in
O�log n� events in the kinetic tournament� Hence the KDS is local� �

��



www.manaraa.com

� Conclusion and further issues

We have presented a new framework for maintaining attributes �con�guration
functions� of objects in continuous motion� This framework introduces an on�
line� combinatorial approach to changes in the con�guration function� avoids
a discretization of time� and sets the ground for using sophisticated algorith�
mic techniques to maintain these con�gurations in what we call kinetic data
structures� We measure the quality of a KDS by its responsiveness� e�ciency�
locality� and compactness� By working through three examples� we have demon�
strated the generality of the kinetization procedure� which transforms a static
algorithm into its kinetic counterpart� Moreover� the algorithms described in
this paper have been implemented� showing that the framework as well as the
algorithms are valuable in practice 	�
��

In conclusion� we mention a few of the numerous issues that need further
work�

Although in the analyses of the two examples discussed in this paper �convex
hull and closest pair� we have assumed that each point follows a �xed pseudo�
algebraic �ight plan� in general it is important to make the number of �ight
plan changes �globally� or on a per object basis� a parameter of the analysis�
This will become necessary� even if our actual objects never change �ight plans�
whenever we want to compose kinetizations� For example� the separation of the
closest pair among continuously moving points changes continuously� even if the
actual pairs realizing the distance change from time to time� If this distance
itself is to become an input to another kinetic algorithm� its �ight plan has
to be updated whenever the underlying realizing pair changes� An instance of
this phenomenon is already present inside our kinetization of the closest pair
algorithm in Section 
�

Experiments on random inputs showed that our kinetic convex hull algorithm
has an overhead of internal events that is of the same order as the number of ex�
ternal events� whereas our kinetic closest pair algorithm always processes ��n��
internal events� Hence� ideally� the measure of e�ciency should not compare
the worst�case number of internal events to the worst�case number of external
events� but the worst�case ratio of the actual number of internal events to the
actual number of external events for any �ight plan� It appears much more dif�
�cult to develop good algorithms with respect to this measure� Even if an exact
analysis is di�cult� heuristics that prune unneeded internal events are likely to
prove important in practice�

We can view our kinetization process as starting from a proof of correctness of
a static con�guration function� and then �animating this proof through time��
Not all proofs are equally good for this use� Our locality requirement favors
proofs that have a small number of predicates involving each particular datum�

��



www.manaraa.com

Thus it will generally be advantageous to start with �shallow proofs��proofs
of small depth�for the static problem� such as one gets� for example� from
parallel algorithms for solving the static version� Techniques already developed
in parallel computational geometry 	�� or in parametric searching 	�� may prove
to be useful�

In a real time system� it is possible that there is not su�cient time to process
an event completely before the next event appears� If kinetic structures are
to be used in such a context� it is crucial to be able to maintain partially
correct structures� with a mechanism for processing multiple events e�ciently
and correctly as a batch�

Acknowledgments� We wish to thank Pankaj Agarwal� Rajeev Motwani�
G�D� Ramkumar� Craig Silverstein� and Li Zhang for useful discussions� Julien
Basch� Craig Silverstein� and Li Zhang implemented the algorithms described
in this paper� Leonidas Guibas acknowledges support by ARO#MURI grant
���
���� and NSF grants CCR�������� and IRI��

�����

References

��� P� Agarwal� J� Erickson� and L� Guibas� Kinetic binary space partitions for
triangles� In Proc� �th ACM�SIAM Sympos� Discrete Algorithms� pages ��	
����
January ���
�

��� P� K� Agarwal� L� Guibas� J� Hershberger� and E� Veach� Maintaining the extent
of a moving point set� In Proceedings of the �th Workshop on Algorithms and
Data Structures� pages ��
��� Springer�Verlag� ���	� Lecture Notes in Computer
Science ��	��

��� P� K� Agarwal� L� J� Guibas� T� Murali� and J� Vitter� Cylindrical static and
kinetic binary space partitions� In Proc� ��th Annu� ACM Sympos� Comput�
Geom�� pages ��
�
� ���	�

��� P� K� Agarwal� O� Schwarzkopf� and M� Sharir� The overlay of lower envelopes
and its applications� Discrete Comput� Geom�� ����
��� �����

��� Pankaj K� Agarwal� M� Sharir� and S� Toledo� Applications of parametric search�
ing in geometric optimization� J� Algorithms� �	����
��
� �����

��� S� G� Akl and K� A� Lyons� Parallel Computational Geometry� Prentice Hall�
�����

�	� M� J� Atallah� Some dynamic computational geometry problems� Comput� Math�
Appl�� �����	�
��
�� ��
��

�
� J� Basch� L� J� Guibas� and J� Hershberger� Data structure for mobile data�
In Proc� �th ACM�SIAM Sympos� Discrete Algorithms� pages 	�	
	��� January
���	�

��� J� Basch� L� J� Guibas� and G�D� Ramkumar� Sweeping lines and line segments
with a heap� In Proc� ��th Annu� ACM Sympos� Comput� Geom�� pages ���
�	��
���	�

��



www.manaraa.com

���� J� Basch� L� J� Guibas� C� D� Silverstein� and L� Zhang� A practical evaluation
of kinetic data structures� In Proc� ��th Annu� ACM Sympos� Comput� Geom��
pages �


���� ���	�

���� J� Basch� L� J� Guibas� and L� Zhang� Proximity problems on moving points� In
Proc� ��th Annu� ACM Sympos� Comput� Geom�� pages ���
���� ���	�

���� J� L� Bentley and T� A� Ottmann� Algorithms for reporting and counting geo�
metric intersections� IEEE Trans� Comput�� C��
����
��	� ��	��

���� Sergei N� Bespamyatnikh� An optimal algorithm for closest pair maintenance� In
Proc� ��th Annu� ACM Sympos� Comput� Geom�� pages ���
���� �����

���� K� Q� Brown� Comments on �Algorithms for reporting and counting geometric
intersections�� IEEE Trans� Comput�� C������	
��
� ��
��

���� Paul B� Callahan and S� Rao Kosaraju� Algorithms for dynamic closest�pair and
n�body potential �elds� In Proc� �th ACM�SIAM Sympos� Discrete Algorithms
�SODA 	��
� pages ���
�	�� �����

���� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algorithms�
The MIT Press� Cambridge� Mass�� �����

��	� O� Devillers� M� Golin� K� Kedem� and S� Schirra� Revenge of the dog� Queries on
Voronoi diagrams of moving points� In Proc� �th Canad� Conf� Comput� Geom��
pages ���
��	� �����

��
� H� Edelsbrunner and E� Welzl� Constructing belts in two�dimensional arrange�
ments with applications� SIAM J� Comput�� ����	�
�
�� ��
��

���� J��J� Fu and R� C� T� Lee� Voronoi diagrams of moving points in the plane�
Internat� J� Comput� Geom� Appl�� �������
��� �����

���� M� Golin� R� Raman� C� Schwarz� and M� Smid� Randomized data structures
for the dynamic closest�pair problem� In Proc� �th ACM�SIAM Sympos� Discrete
Algorithms� pages ���
���� �����

���� L� Guibas� J� S� B� Mitchell� and T� Roos� Voronoi diagrams of moving points in
the plane� In Proc� ��th Internat� Workshop Graph�Theoret� Concepts Comput�
Sci�� volume �	� of Lecture Notes in Computer Science� pages ���
���� Springer�
Verlag� �����

���� J� Hershberger� Finding the upper envelope of n line segments in O�n log n� time�
Inform� Process� Lett�� ������
�	�� ��
��

���� J� Hershberger and S� Suri� Applications of a semi�dynamic convex hull algorithm�
BIT� ������
��	� �����

���� S� Kapoor and M� Smid� New techniques for exact and approximate dynamic
closest�point problems� In Proc� �
th Annu� ACM Sympos� Comput� Geom�� pages
���
�	�� �����

���� M� C� Lin and J� F� Canny� E�cient algorithms for incremental distance compu�
tation� In Proc� IEEE Internat� Conf� Robot� Autom�� volume �� pages ���

�����
�����

���� T� Ottmann and D� Wood� Dynamical sets of points� Comput� Vision Graph�
Image Process�� �	���	
���� ��
��

��



www.manaraa.com

��	� M� H� Overmars and J� van Leeuwen� Maintenance of con�gurations in the plane�
J� Comput� Syst� Sci�� ������
���� ��
��

��
� Madhav K� Ponamgi� Ming C� Lin� and Dinesh Manocha� Incremental collision
detection for polygonal models� In Proc� ��th Annu� ACM Sympos� Comput�
Geom�� pages V	
V
� �����

���� F� P� Preparata and M� I� Shamos� Computational Geometry� An Introduction�
Springer�Verlag� New York� NY� ��
��

���� T� Roos� Voronoi diagrams over dynamic scenes� Discrete Appl� Math�� ������

���� �����

���� M� Sharir� Almost tight upper bounds for lower envelopes in higher dimensions�
Discrete Comput� Geom�� �����	
���� �����

���� M� Sharir and P� K� Agarwal� Davenport�Schinzel Sequences and Their Geometric
Applications� Cambridge University Press� New York� �����

� 


